Cours gratuits > Forum > Forum maths || En bas
Vn et ln(Un)
Message de charlemagne91 posté le 05-03-2011 à 19:02:27 (S | E | F)
Bonsoir,
en considérant Un=(1+(1/n)^n)
on pose x=1/n
exprimer Vn=ln(Un) en fonction de x
Je trouve Vn=(1/x)ln(1+x)
Est-ce juste?
Merci d'avance!
charlemagne
Message de charlemagne91 posté le 05-03-2011 à 19:02:27 (S | E | F)
Bonsoir,
en considérant Un=(1+(1/n)^n)
on pose x=1/n
exprimer Vn=ln(Un) en fonction de x
Je trouve Vn=(1/x)ln(1+x)
Est-ce juste?
Merci d'avance!
charlemagne
Réponse: Vn et ln(Un) de nick94, postée le 05-03-2011 à 21:59:14 (S | E)
Bonsoir,
dans l'expression de un, l'exposant n concerne-t-il (1 + 1/n) ou seulement 1/n comme tu l'as écrit ?
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 15:40:35 (S | E)
Je me suis trompé, l'exposant est sur (1+(1/n))
on a (1+(1/n))^
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 15:47:31 (S | E)
Je suis donc d'accord avec ton résultat.
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 15:53:52 (S | E)
Merci !Comment je calcul la limite en +oo?
je mes 1/x en facteur?
Mais je tombe sur une forme indéterminée???
je sais que lim((ln(1+x))/x)=1 quand ça tend vers O mais moi c'est vers+oo...
Merci beaucoup pout tout^^
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 16:09:49 (S | E)
Donc tout va bien, car si n tend vers +00, x = 1/n tend vers 0
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 16:33:00 (S | E)
oui mais o*+oo est indéterminé...
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 16:38:14 (S | E)
Tu as écrit
je sais que lim((ln(1+x))/x)=1 quand ça tend vers O
or : lim vn en +oo = lim((ln(1+x))/x) en O = 1
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 16:40:01 (S | E)
merci
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 16:58:25 (S | E)
lim vn en +oo = lim((ln(1+x))/x) en O = 1
au fait, pourquoi on peut dire ça?
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 17:08:05 (S | E)
et pourquoi lim(1+(1/n))^n=e quand n -->+oo?
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 17:10:47 (S | E)
ensuite, de la limite de vn on doit déduire que Un converge.
Je n'y arrive pas.
en plus, Un peut elle avoir +oo pour limite et converger?
merci de votre aide
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 17:34:58 (S | E)
lim vn en +oo = lim((ln(1+x))/x) en O = 1
au fait, pourquoi on peut dire ça?
tu as écrit
Je trouve Vn=(1/x)ln(1+x)
je sais que lim((ln(1+x))/x)=1
j'ai écrit
si n tend vers +00, x = 1/n tend vers 0
il suffit de rapprocher tout cela, le comprends-tu ?
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 17:58:45 (S | E)
je suis vraiment désolé mais je ne vois pas le rapport...
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 19:32:33 (S | E)
en résumé, c'est un changement de variable, tu remplaces n (qui tend vers l'infini) par x = 1/n (qui tend vers zéro)
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 20:32:22 (S | E)
bonsoir, cette fois, je crois que j'ai compris
ln((1+x)/x)=ln(1+(1/x))
limite de 1/X quand X-->+00=O
lim(ln1)=O
pourquoi je ne retrouve pas 1?
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 21:01:29 (S | E)
Ce n'est pas ln((1+x)/x) mais (ln(1+x))/x ;
c'est un résultat de cours que lim((ln(1+x))/x)=1 quand x tend vers O
Réponse: Vn et ln(Un) de charlemagne91, postée le 06-03-2011 à 21:24:28 (S | E)
Mais ce que je ne comprend pas est que l'on passe d'une propriété quand ça tend vers O à une où c'est en +00
Est-ce que vous pouriez s'il vous plait me décomposer le calcul de la limite de Vn=ln(Un)?
Réponse: Vn et ln(Un) de nick94, postée le 06-03-2011 à 21:29:42 (S | E)
Lorsque x tend vers 0 alors n = 1/x tend vers +00
Réponse: Vn et ln(Un) de iza51, postée le 08-03-2011 à 09:48:45 (S | E)
bonjour
note: Ne pas confondre x et n. Lorsque n tend vers +∞, x tend vers 0 puisque x=1/n
La suite (vn) converge dons vers 1
et comme
on peut en déduire que la suite (un) est convergente
Pouvez-vous donner sa limite?
Réponse: Vn et ln(Un) de charlemagne91, postée le 09-03-2011 à 14:17:44 (S | E)
Bonjour et merci beaucoup, j' ai maintenant compris le changement de variable!
Oui, la limite est:
lim(Un)n-->+oo=e^1=e
est-ce cela?
Merci vraiment beaucoup!
Cours gratuits > Forum > Forum maths