Cours de mathématiques gratuitsCréer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Aide/Contact
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien

Recommandés :
- Traducteurs gratuits
- Jeux gratuits
- Nos autres sites
   

Dérive

<< Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Dérive
Message de mathjulie posté le 30-10-2010 à 14:28:26 (S | E | F)
Bonjour, j'ai un exercice à faire mais je ne suis pas sure de mes réponses, pourriez vous le vérifier,

Voici l'énoncé:

f-->x : (2-x) exp(x) -1 définie sur l'intervalle semi ouvert à droite 0 ; + infini je dois étudier:

- variation de f et limite en + et - l'infini
- montrer que f(x)=0 a une solution sur l'intervalle fermé 1;2
- le signe de f


Voici mes réponses:

1) f est dérivable surR
f'(x)= e(x) ( 1-x)

f'(x)=0 <=> x=1

tableau : Je dois bien commencer mon tableau à 0 dans la ligne des x ?
sur [0;1] f'(x) est positive donc f est croissante
sur [1;+infini[ f'(x) est négative donc f est décroissante

limf(x) = -inf
x-->+inf

f(0)=1
f(1)=environ 1,7


2) j'utilise le théorème de la bijection:

- f est dérivable sur R et donc sur [1;2]
- f est décroissante sur cette intervalle
- f(1)=1,7
- f(2)=-1
- 0 appartient à [f(1) ; f(2)]

donc l'équation admet une seule solution a

après vérification a est compris entre 1,84 et 1,85

3) tableau: Je dois bien commencer mon tableau à 0 dans la ligne des x ?
sur [0;1] f(x) est positive
sur [1;+inf[ f(x) est négative


Merci d'avance




Réponse: Dérive de iza51, postée le 30-10-2010 à 14:56:49 (S | E)
bonjour
jusqu'à f'(x)=(1-x)*exp(x)
c'est OK
pour l'étude du signe; dire que f'(x)=0 <=> x=1 ne justifie que le "zéro" mais pas les signes + et - ailleurs
Il faut dans le tableau intercaler deux lignes: une pour le signe de (1-x) et une autre pour le signe de exp(x)
en terminale, on vient juste d'apprendre la fonction exponentielle et il est important de dire: on sait que cette fonction est strictement positive sur R donc sur l'intervalle de définition de f
ensuite seulement vient la ligne du produit f'(x)

l'image de 1 n'est pas 1.7; l'image de 1 est e-1 qui a pour valeur approchée 1.7 mais ce n'est pas la vraie valeur!

2) pour le théorème de la bijection: il est important de dire que la fonction est strictement décroissante sur [1; 2]
Sans la stricte monotonie, la conclusion n'est plus valide

3) vous avez écrit
sur [0;1] f(x) est positive
sur [1;+inf[ f(x) est négative
C'est faux
La fonction f ne s'annule pas en 1 mais en α
la fonction devient négative sur [α ; + ∞[



Réponse: Dérive de mathjulie, postée le 30-10-2010 à 16:57:32 (S | E)
d'accord, merci beaucoup et est ce que je peux dire que :

x--> (2-x) exp(x) est dérivable sur r
et x--> -1 est dérivable sur R

f étant la dérivé de la somme de deux fonction dérivable sur R alors f est dérivable sur R ?


Merci d'avance




Réponse: Dérive de iza51, postée le 30-10-2010 à 17:26:12 (S | E)
non
f n'est pas la dérivée de ...
il faut dire
x-> exp(x) et x-> 2-x sont dérivables sur R donc le produit est dérivable sur R
Alors f est aussi dérivable sur R (comme somme de fonctions dérivables)



Réponse: Dérive de mathjulie, postée le 31-10-2010 à 08:59:30 (S | E)
D'accord, merci beaucoup de votre aide, j'ai tout compris

Bonne continuation




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


<< Forum maths












 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | NOS MEILLEURES FICHES | Fiches les plus populaires | Aide/Contact

> NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de français | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice. | Mentions légales / Vie privée / Cookies [Modifier vos choix] .
| Cours et exercices de mathématiques 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.



| Partager sur les réseaux