Cours de mathématiques gratuitsCréer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Aide/Contact
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien

Recommandés :
- Traducteurs gratuits
- Jeux gratuits
- Nos autres sites
   

[Maths]Barycentres et produits scalaires (1)



<< Forum maths || En bas

POSTER UNE NOUVELLE REPONSE


[Maths]Barycentres et produits scalaires


Message de yopdu59 posté le 29-08-2008 à 11:16:18 (S | E | F)

Bonjour,

Voilà j'ai des exercices à rendre pour la rentrer et je sèche sur certains d'eux:

A,B,C sont non alignés
Déterminer l'ensemble des points M du plan vérifiant l'égalité proposéé:

1)(2MA-5MB).AB=0
2)(2MA-MB-MC).AM=0 (il s'agit de vecteurs)

Et aussi à tout point M du cercle on associe le milieu M' du segment [AM] et il faut trouver l'ensemble décrit par le point M' lorsque M décrit le cercle C. Je pense qu'il s'agit aussi d'un cercle car on effectue une homotétie mais je n'en suis pas sur.




Réponse: [Maths]Barycentres et produits scalaires de iza51, postée le 29-08-2008 à 18:01:57 (S | E)
Bonjour,
ok pour l'exo avec homothétie; précise son centre et son rapport

pour le premier exo, la réponse est dans le titre : il faut introduire un barycentre, pour pouvoir le définir, pense que cela doit simplifier le vecteur (2MA-5MB)
pour le 2ème exo, pas de barycentre pour simplifier le vecteur (2MA-MB-MC)
il y a une histoire de coefficients de somme 0; on peut quand même simplifier le vecteur (2MA-MB-MC)(c'est un vecteur qui ne dépend pas de M)
cherche et poste les réponses (mêmes partielles)


Réponse: [Maths]Barycentres et produits scalaires de yopdu59, postée le 30-08-2008 à 10:12:12 (S | E)
Bonjour,
Alors pour l'homothétie, je pense qu'elle est de centre M' et de rapport 2.
Et l'image d'un cercle est un cercle de centre I' et de rapport h(R).

2MA-5MB. Soit H bary de donc -3MG.AB=0 les vecteurs sont donc orthogonaux. M ligne de nivau perpandiculaire à AB au niveau -3.




Réponse: [Maths]Barycentres et produits scalaires de iza51, postée le 30-08-2008 à 10:27:40 (S | E)
le centre de l'homothétie est un point fixe; or M' dépend de M: A revoir!

???"M ligne de nivau perpandiculaire à AB au niveau -3."???
"les vecteurs sont donc orthogonaux" oui et il s'agit des vecteurs MG et AB
Donc l'ensemble des points M est la droite perpendiculaire à (AB) passant par G -les formules sont devenues illisibles ! chez toi aussi? pourrais-tu préciser sans formule le barycentre G?

et la dernière somme vectorielle? plusieurs méthodes: -soit tu connais la règle du parallélogramme et tu simplifies +MB + MC (vecteur opposé de -MB-MC)(fais un schéma; il faut définir un nouveau point), -soit tu utilises la relation de CHASLES et tu "intercales A" dans MB et MC




POSTER UNE NOUVELLE REPONSE












 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | NOS MEILLEURES FICHES | Fiches les plus populaires | Aide/Contact

> NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de français | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice. | Mentions légales / Vie privée / Cookies [Modifier vos choix] .
| Cours et exercices de mathématiques 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.



| Partager sur les réseaux