Cours de mathématiques gratuitsCréer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Aide/Contact
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien

Recommandés :
- Traducteurs gratuits
- Jeux gratuits
- Nos autres sites
   

[Maths]problème avec les produits remarquables (1)

<< Forum maths || En bas

POSTER UNE NOUVELLE REPONSE


[Maths]problème avec les produits remarquables
Message de liecobop posté le 18-03-2008 à 22:32:08 (S | E | F)

j'essaye de résoudre trois équations avec ma petite fille:
(2x-3)²= 4x² - 2.(2X(3) + (-3)²

(-3x -1)(3x+1)= (3x)² - 2.(3X.5Y³) +(5Y³)²

(-x+0,2)(0,2+X) = -x+0,2²
merci pour vos remarques éventuelles et bonne soirée à tous.
liecobop



Réponse: [Maths]problème avec les produits remarquables de marsu69, postée le 19-03-2008 à 02:17:35 (S | E)
Bonsoir,
Est-ce-que vos équations à résoudre sont :
(2x-3)²=0
(-3x-1)(3x+1)=0
(-x-0,2)(0,2+x) =0
Si tel est le cas la démarche à suivre est la suivante :
(2x-3)²=0 on remarque que c'est une identité remarquable de type (a-b)² qui se développe ainsi a²-2ab+b² on développe :
4x²-12x+9 =0 équation du second degré calcul du discriminant
discriminant = b²-4ac =(-12)²-4(4)(9)= 144-144=0
si discriminant =0 alors l'équation n'aura qu'une seule solution -b/2a
-b/2a= -(-12)/2(4) =12/8 = 3/2 donc la solution S =

Pour la seconde c'est plus simple :
résoudre (-3x-1)(3x+1) =0 revient à dire que l'égalité est toujours vraie si l'un des facteurs est égal à 0 (car n'importe quel réel multiplié par 0 = 0)
donc il suffit de résoudre (-3x-1)=0 ou (3x+1)=0 donc S= car x=-1/3 dans les 2 cas .
Je vous laisse le plaisir de résoudre la troisième c'est le même principe que la seconde .





Réponse: [Maths]problème avec les produits remarquables de fr, postée le 20-03-2008 à 15:43:40 (S | E)
Bonjour,
marsu69, il n'est pas besoin de développer (2x-3)² pour connaitre ses racines, comme le polynome est factorisé, on voit tout de suite qu'il y a une racine double qui est la même que pour 2x-3=0
(le raisonnement est le même que celui que vous appliquez aux cas 2 et 3 ..., sauf que l'on a 2 fois le même facteur voilà tout ...)

Mais le problème est peut-être simplement de développer les identités remarquables du type :
(a+b)² = a² + 2ab + b²
(a-b)² = a² - 2ab + b²
(a+b)(a-b) = a² - b²




Réponse: [Maths]problème avec les produits remarquables de marsu69, postée le 20-03-2008 à 16:16:19 (S | E)
Slt fr,
Suis ok avec vous sur la remarque Et en fait elle voulait tout simplement développer les identités remarquables et puis vous serez d'accord avec moi, ce bon vieux discriminant est toujours bon à connaître .


Réponse: [Maths]problème avec les produits remarquables de fr, postée le 20-03-2008 à 17:32:57 (S | E)
En effet




POSTER UNE NOUVELLE REPONSE












 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | NOS MEILLEURES FICHES | Fiches les plus populaires | Aide/Contact

> NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de français | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice. | Mentions légales / Vie privée / Cookies [Modifier vos choix] .
| Cours et exercices de mathématiques 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.



| Partager sur les réseaux