Cours de mathématiques gratuitsCréer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Aide/Contact
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien

Recommandés :
- Traducteurs gratuits
- Jeux gratuits
- Nos autres sites
   

Acosx+bsinx

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Acosx+bsinx
Message de kadfr posté le 10-12-2019 à 18:22:14 (S | E | F)
Bonjour

Résolution de l'équation trigonométrique: acos(x)+bsin(x)=c, a,b et c réels.
J'ai vu sur internet la transformation: acos(x)/(a²+b²)+bsin(x)/(a²+b²)=c/(a²+b²)
Jusque là ça va!

Puis la question: montrer que a²/(a²+b²)+b²/(a²+b²)=1
C'est évident que(a²+b²)/(a²+b²)=1

Puis on pose cos(x)*cos(teta)+sin(x)*sin(teta)=c/(a²+b²)

D'ou' sort l'angle teta ?

Merci d'avance.


Réponse : Acosx+bsinx de tiruxa, postée le 10-12-2019 à 19:06:42 (S | E)
Bonjour,

En fait on divise par racine(a²+b²)

On obtient comme coefficients a/rac(a²+b²) et b/rac(a²+b²)

Appelons u et v ces coefficients, on a u²+v²=1, le point de coordonnées (u;v) est donc sur le cercle trigonométrique, ce pont correspond à un réel theta, tel que u = cos(theta) et v = sin(theta)

Ex : si = =1 et b = rac(3) on a u = 1/2 et v = rac(3)/2
d'où theta= pi/3




Réponse : Acosx+bsinx de kadfr, postée le 11-12-2019 à 11:49:18 (S | E)
Bonjour et merci pour la réponse et les indications.
Je reprends:

acos(x)/rac(a²+b²)+bsin(x)/rac(a²+b²)=c/rac(a²+b²)

comme a²/(a²+b²)+b²/(a²+b²)=1 on pose a/rac(a²+b²)=cos(teta) et b/rac(a²+b²)=sin(teta)
On obtient:
cos(x)cos(teta)+sin(x)sin(teta)=c/rac(a²+b²)
ce qui donne:cos(x-teta)=c/rac(a²+b²)
On pose: c/rac(a²+b²)=cos(arccos(c/rac(a²+b²)))
donc cos(x-teta)=cos(arccos(c/rac(a²+b²)))

Les solutions: x=arccos(c/rac(a²+b²))+teta
ou x = -arccos(c/rac(a²+b²))+teta

Merci pour vérification.



Réponse : Acosx+bsinx de tiruxa, postée le 11-12-2019 à 15:41:03 (S | E)
Bonjour

Oui c'est bien ça.

Bien sûr à condition que c/rac(a²+b²) soit compris entre -1 et 1, c'est à dire dans l'ensemble de définition de arcos.

et les solutions sont modulo 2pi, c'est à dire que l'on peut ajouter 2k*pi aux solutions où k est un entier relatif.




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths












 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | NOS MEILLEURES FICHES | Fiches les plus populaires | Aide/Contact

> NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de français | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice. | Mentions légales / Vie privée / Cookies [Modifier vos choix] .
| Cours et exercices de mathématiques 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.



| Partager sur les réseaux