> Plus de cours & d'exercices de maths (mathématiques) sur le même thème : Arithmétique [Autres thèmes] | |
> Tests similaires : - Multiples de 2, 3, 5, 9 et 10 (CM2-6ème) - Nombres premiers - Critères de divisibilité par 2,3,4,5,8,9,11 - PPCM-Plus Petit Multiple Commun - Additions à trous en base douze - PGCD, les méthodes !! - Nombres premiers - PGCD : cours | |
> Double-cliquez sur n'importe quel terme pour obtenir une explication... |
PGCD et nombres premiers entre eux - cours
Le pgcd de deux entiers naturelsest leur plus grand diviseur commun. Recherchons tous les diviseurs des deux nombres. Les diviseurs de 132 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 11 ; 12 ; 22 ; 33 ; 44 ; 66 ; 132. Les diviseurs communs (présents dans les deux listes) sont : 1 ; 2; 3 ; 4 ; 6 ; 12. Le plus grand diviseur commun est donc : 12. Remarque : les diviseurs communs sont les diviseurs du pgcd. Décomposons les deux nombres en produits de facteurs premiers. Par soustractions successives. À partir de là, la solution est évidente : le pgcd est12. Par divisions successives (algorithme d’Euclide). Le pgcd est souvent utilisé dans les simplifications de fractions : La meilleure simplification possible consiste à diviser le numérateur et le dénominateur par leur pgcd ; on obtient directement la fraction irréductible. |
Exercice de maths (mathématiques) "PGCD et nombres premiers entre eux - cours" créé par lemarseillais avec le générateur de tests - créez votre propre test ! [Plus de cours et d'exercices de lemarseillais]
Voir les statistiques de réussite de ce test de maths (mathématiques)
Merci de vous connecter à votre compte pour sauvegarder votre résultat.
Fin de l'exercice de maths (mathématiques) "PGCD et nombres premiers entre eux - cours"
Un exercice de maths gratuit pour apprendre les maths (mathématiques).
Tous les exercices | Plus de cours et d'exercices de maths (mathématiques) sur le même thème : Arithmétique